logo

La struttura e il principio del cuore

Il cuore è un organo muscolare negli uomini e negli animali che pompa il sangue attraverso i vasi sanguigni.

Funzioni del cuore: perché abbiamo bisogno di un cuore?

Il nostro sangue fornisce tutto il corpo con ossigeno e sostanze nutritive. Inoltre, ha anche una funzione di pulizia, aiutando a rimuovere i rifiuti metabolici.

La funzione del cuore è pompare il sangue attraverso i vasi sanguigni.

Quanto sangue pompa il cuore di una persona?

Il cuore umano pompa circa 7.000-10.000 litri di sangue in un giorno. Questo è circa 3 milioni di litri all'anno. Risulta fino a 200 milioni di litri in una vita!

La quantità di sangue pompato in un minuto dipende dal carico fisico ed emotivo corrente - maggiore è il carico, più sangue ha bisogno il corpo. Quindi il cuore può passare da solo a 5 a 30 litri in un minuto.

Il sistema circolatorio è costituito da circa 65 mila navi, la loro lunghezza totale è di circa 100 mila chilometri! Sì, non siamo sigillati.

Sistema circolatorio

Sistema circolatorio (animazione)

Il sistema cardiovascolare umano è costituito da due cerchi di circolazione sanguigna. Ad ogni battito del cuore, il sangue si muove in entrambi i cerchi contemporaneamente.

Sistema circolatorio

  1. Il sangue deossigenato dalla vena cava superiore e inferiore entra nell'atrio destro e poi nel ventricolo destro.
  2. Dal ventricolo destro, il sangue viene spinto nel tronco polmonare. Le arterie polmonari portano il sangue direttamente nei polmoni (prima dei capillari polmonari), dove riceve ossigeno e rilascia biossido di carbonio.
  3. Avendo ricevuto abbastanza ossigeno, il sangue ritorna all'atrio sinistro del cuore attraverso le vene polmonari.

Circolazione del Circolo Grande

  1. Dall'atrio sinistro, il sangue si sposta verso il ventricolo sinistro, da dove viene ulteriormente pompato attraverso l'aorta nella circolazione sistemica.
  2. Dopo aver attraversato un percorso difficile, il sangue attraverso le vene cave arriva di nuovo nell'atrio destro del cuore.

Normalmente, la quantità di sangue espulso dai ventricoli del cuore ad ogni contrazione è la stessa. Quindi, un uguale volume di sangue scorre simultaneamente nei cerchi grandi e piccoli.

Qual è la differenza tra vene e arterie?

  • Le vene sono progettate per trasportare il sangue al cuore e il compito delle arterie è di fornire sangue nella direzione opposta.
  • Nelle vene, la pressione sanguigna è inferiore a quella delle arterie. In accordo con ciò, le arterie delle pareti si distinguono per maggiore elasticità e densità.
  • Le arterie saturano il tessuto "fresco" e le vene prendono il sangue "di rifiuto".
  • In caso di danno vascolare, il sanguinamento arterioso o venoso può essere distinto per la sua intensità e il colore del sangue. Arteriale - "fontana" forte, pulsante, pulsante, il colore del sangue è luminoso. Venoso - sanguinamento di intensità costante (flusso continuo), il colore del sangue è scuro.

Struttura anatomica del cuore

Il peso del cuore di una persona è solo di circa 300 grammi (in media, 250 g per le donne e 330 g per gli uomini). Nonostante il peso relativamente basso, questo è indubbiamente il muscolo principale nel corpo umano e la base della sua attività vitale. La dimensione del cuore è in effetti approssimativamente uguale al pugno di una persona. Gli atleti possono avere un cuore una volta e mezza più grande di quello di una persona comune.

Il cuore si trova nel centro del torace a livello di 5-8 vertebre.

Normalmente, la parte inferiore del cuore si trova principalmente nella metà sinistra del torace. Esiste una variante della patologia congenita in cui tutti gli organi sono specchiati. Si chiama trasposizione degli organi interni. Il polmone, accanto al quale si trova il cuore (normalmente a sinistra), ha una dimensione minore rispetto all'altra metà.

La superficie posteriore del cuore si trova vicino alla colonna vertebrale e la parte anteriore è protetta in modo sicuro dallo sterno e dalle costole.

Il cuore umano è costituito da quattro cavità indipendenti (camere) divise per partizioni:

  • due atria superiore sinistra e destra;
  • e due ventricoli sinistro-destro e sinistro.

Il lato destro del cuore include l'atrio destro e il ventricolo. La metà sinistra del cuore è rappresentata rispettivamente dal ventricolo sinistro e dall'atrio.

Le vene cave inferiori e superiori entrano nell'atrio destro e le vene polmonari entrano nell'atrio sinistro. Le arterie polmonari (chiamate anche tronco polmonare) escono dal ventricolo destro. Dal ventricolo sinistro si alza l'aorta ascendente.

Struttura della parete del cuore

Struttura della parete del cuore

Il cuore ha protezione dagli altri organi, che è chiamato pericardio o sacchetto pericardico (una sorta di busta in cui è racchiuso l'organo). Ha due strati: il tessuto connettivo solido denso esterno, chiamato membrana fibrosa del pericardio e interno (pericardico sieroso).

Questo è seguito da uno spesso strato muscolare - miocardio ed endocardio (membrana interna del tessuto connettivo sottile del cuore).

Quindi, il cuore stesso consiste di tre strati: l'epicardio, il miocardio, l'endocardio. È la contrazione del miocardio che pompa il sangue attraverso i vasi del corpo.

Le pareti del ventricolo sinistro sono circa tre volte più grandi delle pareti della destra! Questo fatto è spiegato dal fatto che la funzione del ventricolo sinistro consiste nel spingere il sangue nella circolazione sistemica, dove la reazione e la pressione sono molto più alte che nel piccolo.

Valvole cardiache

Dispositivo a valvola cardiaca

Speciali valvole cardiache consentono di mantenere costantemente il flusso sanguigno nella direzione destra (unidirezionale). Le valvole si aprono e si chiudono una ad una, facendo entrare il sangue o bloccandone il percorso. È interessante notare che tutte e quattro le valvole si trovano lungo lo stesso piano.

Una valvola tricuspide si trova tra l'atrio destro e il ventricolo destro. Contiene tre speciali piastre-telaio, capaci durante la contrazione del ventricolo destro per proteggere dalla corrente inversa (rigurgito) del sangue nell'atrio.

Allo stesso modo, la valvola mitrale funziona, solo che si trova nella parte sinistra del cuore ed è bicuspide nella sua struttura.

La valvola aortica impedisce il deflusso di sangue dall'aorta nel ventricolo sinistro. È interessante notare che quando il ventricolo sinistro si contrae, la valvola aortica si apre a causa della pressione del sangue su di esso, quindi si trasferisce nell'aorta. Quindi, durante la diastole (il periodo di rilassamento del cuore), il flusso inverso di sangue dall'arteria contribuisce alla chiusura delle valvole.

Normalmente, la valvola aortica ha tre volantini. La più comune anomalia congenita del cuore è la valvola aortica bicuspide. Questa patologia si verifica nel 2% della popolazione umana.

Una valvola polmonare (polmonare) al momento della contrazione del ventricolo destro consente al sangue di fluire nel tronco polmonare e durante la diastole non gli consente di fluire nella direzione opposta. Inoltre consiste di tre ali.

Vasi cardiaci e circolazione coronarica

Il cuore umano ha bisogno di cibo e ossigeno, così come ogni altro organo. I vasi che forniscono (nutrono) il cuore con il sangue sono chiamati coronari o coronarici. Queste navi si dipartono dalla base dell'aorta.

Le arterie coronarie forniscono al cuore il sangue, le vene coronarie rimuovono il sangue deossigenato. Quelle arterie che si trovano sulla superficie del cuore sono chiamate epicardiche. Subendocardial sono chiamate arterie coronarie nascoste in profondità nel myocardium.

La maggior parte del flusso di sangue dal miocardio avviene attraverso tre vene del cuore: grandi, medie e piccole. Formando il seno coronarico, cadono nell'atrio destro. Le vene anteriori e minori del cuore trasportano il sangue direttamente nell'atrio destro.

Le arterie coronarie sono divise in due tipi: destra e sinistra. Quest'ultimo consiste delle arterie interventricolari e buste anteriori. Una grande vena del cuore si dirama nelle vene posteriori, medie e piccole del cuore.

Anche le persone perfettamente sane hanno le loro caratteristiche uniche della circolazione coronarica. In realtà, le navi possono apparire ed essere posizionate in modo diverso rispetto a quanto mostrato nell'immagine.

Come si sviluppa il cuore (forma)?

Per la formazione di tutti i sistemi del corpo il feto richiede la propria circolazione sanguigna. Pertanto, il cuore è il primo organo funzionale che sorge nel corpo di un embrione umano, si verifica approssimativamente nella terza settimana di sviluppo fetale.

L'embrione all'inizio è solo un gruppo di cellule. Ma con il corso della gravidanza, diventano sempre più, e ora sono connessi, formando in forme programmate. In primo luogo, si formano due tubi, che poi si fondono in uno. Questo tubo è piegato e precipitandosi verso il basso forma un cappio - il ciclo cardiaco primario. Questo anello è davanti a tutte le cellule rimanenti in crescita e viene rapidamente esteso, quindi giace a destra (forse a sinistra, il che significa che il cuore si troverà a forma di specchio) sotto forma di un anello.

Quindi, di solito il 22 ° giorno dopo il concepimento, si verifica la prima contrazione del cuore, e dal 26 ° giorno il feto ha la propria circolazione sanguigna. Ulteriore sviluppo comporta il verificarsi di setti, la formazione di valvole e il rimodellamento delle camere cardiache. Le partizioni si formeranno entro la quinta settimana e le valvole cardiache saranno formate entro la nona settimana.

È interessante notare che il cuore del feto inizia a battere con la frequenza di un adulto normale: 75-80 tagli al minuto. Quindi, all'inizio della settima settimana, l'impulso è di circa 165-185 battiti al minuto, che è il valore massimo, seguito da un rallentamento. L'impulso del neonato è compreso tra 120 e 170 tagli al minuto.

Fisiologia: il principio del cuore umano

Considera in dettaglio i principi e i modelli del cuore.

Ciclo del cuore

Quando un adulto è calmo, il suo cuore contrae circa 70-80 cicli al minuto. Un battito dell'impulso equivale a un ciclo cardiaco. Con una tale velocità di riduzione, un ciclo dura circa 0,8 secondi. Di questi tempi, la contrazione atriale è di 0,1 secondi, i ventricoli - 0,3 secondi e il periodo di rilassamento - 0,4 secondi.

La frequenza del ciclo è impostata dal driver della frequenza cardiaca (una parte del muscolo cardiaco in cui si verificano gli impulsi che regolano la frequenza cardiaca).

I seguenti concetti sono distinti:

  • Sistole (contrazione) - quasi sempre, questo concetto implica una contrazione dei ventricoli del cuore, che porta a una scossa di sangue lungo il canale arterioso e la massimizzazione della pressione nelle arterie.
  • Diastole (pausa) - il periodo in cui il muscolo cardiaco si trova nella fase di rilassamento. A questo punto, le camere del cuore sono piene di sangue e la pressione nelle arterie diminuisce.

Quindi misurare la pressione sanguigna registra sempre due indicatori. Ad esempio, prendi i numeri 110/70, cosa significano?

  • 110 è il numero superiore (pressione sistolica), cioè, è la pressione sanguigna nelle arterie al momento del battito cardiaco.
  • 70 è il numero più basso (pressione diastolica), cioè è la pressione sanguigna nelle arterie al momento del rilassamento del cuore.

Una semplice descrizione del ciclo cardiaco:

Ciclo del cuore (animazione)

Al momento del rilassamento del cuore, gli atri e i ventricoli (attraverso le valvole aperte) sono pieni di sangue.

  • Si verifica sistole (contrazione) degli atri, che consente di spostare completamente il sangue dagli atri ai ventricoli. La contrazione atriale inizia nel sito di afflusso delle vene dentro di esso, che garantisce la compressione primaria delle loro bocche e l'incapacità del sangue di ritornare nelle vene.
  • Gli atri si rilassano e le valvole che separano gli atri dai ventricoli (tricuspide e mitrale) si chiudono. Si verifica sistole ventricolare.
  • La sistole ventricolare spinge il sangue nell'aorta attraverso il ventricolo sinistro e nell'arteria polmonare attraverso il ventricolo destro.
  • Segue una pausa (diastole). Il ciclo si ripete.
  • Condizionatamente, per un battito del polso, ci sono due battiti del cuore (due sistole): prima gli atri sono ridotti e quindi i ventricoli. Oltre alla sistole ventricolare, esiste una sistole atriale. La contrazione degli atri non ha valore nel lavoro misurato del cuore, poiché in questo caso il tempo di rilassamento (diastole) è sufficiente per riempire i ventricoli di sangue. Tuttavia, una volta che il cuore inizia a battere più spesso, la sistole atriale diventa cruciale - senza di essa, i ventricoli semplicemente non avrebbero il tempo di riempirsi di sangue.

    Il sangue che scorre attraverso le arterie viene eseguito solo con la contrazione dei ventricoli, queste contrazioni di spinta sono chiamate impulsi.

    Muscolo cardiaco

    L'unicità del muscolo cardiaco risiede nella sua capacità di contrazioni automatiche ritmiche, che si alternano al rilassamento, che avviene continuamente durante tutta la vita. Il miocardio (strato medio del muscolo del cuore) degli atri e dei ventricoli è diviso, il che consente loro di contrarsi separatamente l'uno dall'altro.

    Cardiomiociti - cellule muscolari del cuore con una struttura speciale, che consente soprattutto di trasmettere un'ondata di eccitazione. Quindi ci sono due tipi di cardiomiociti:

    • i lavoratori ordinari (99% del numero totale di cellule del muscolo cardiaco) sono progettati per ricevere un segnale da un pacemaker mediante cardiomiociti.
    • i cardiomiociti speciali conduttivi (1% del numero totale di cellule del muscolo cardiaco) formano il sistema di conduzione. Nella loro funzione, assomigliano ai neuroni.

    Come il muscolo scheletrico, il muscolo del cuore è in grado di aumentare il volume e aumentare l'efficienza del suo lavoro. Il volume cardiaco degli atleti di resistenza può essere il 40% più grande di quello di una persona comune! Questo è un utile ipertrofia del cuore, quando si estende ed è in grado di pompare più sangue in un colpo solo. C'è un altro ipertrofia - chiamato "cuore dello sport" o "cuore di toro".

    La linea di fondo è che alcuni atleti aumentano la massa del muscolo stesso, e non la sua capacità di allungare e spingere attraverso grandi volumi di sangue. La ragione di questo è irresponsabile programmi di formazione compilati. Assolutamente qualsiasi esercizio fisico, soprattutto la forza, dovrebbe essere costruito sulla base del cardio. Altrimenti, un eccessivo sforzo fisico su un cuore non preparato causa la distrofia miocardica, portando a morte prematura.

    Sistema di conduzione cardiaca

    Il sistema conduttivo del cuore è un gruppo di formazioni speciali composte da fibre muscolari non standard (cardiomiociti conduttivi), che fungono da meccanismo per assicurare il lavoro armonioso dei reparti cardiaci.

    Percorso di impulso

    Questo sistema garantisce l'automatismo del cuore - l'eccitazione degli impulsi nati nei cardiomiociti senza stimoli esterni. In un cuore sano, la principale fonte di impulsi è il nodo del seno (nodo del seno). Sta guidando e sovrappone gli impulsi di tutti gli altri pacemaker. Ma se si verifica qualche malattia che porta alla sindrome di debolezza del nodo del seno, allora altre parti del cuore assumono la sua funzione. Quindi il nodo atrioventricolare (centro automatico del secondo ordine) e il fascio di His (terzo ordine AC) possono essere attivati ​​quando il nodo del seno è debole. Ci sono casi in cui i nodi secondari migliorano il proprio automatismo e durante il normale funzionamento del nodo del seno.

    Il nodo del seno si trova nella parete posteriore superiore dell'atrio destro nelle immediate vicinanze della bocca della vena cava superiore. Questo nodo avvia impulsi con una frequenza di circa 80-100 volte al minuto.

    Il nodo atrioventricolare (AV) si trova nella parte inferiore dell'atrio destro nel setto atrioventricolare. Questa partizione impedisce la diffusione di impulsi direttamente nei ventricoli, bypassando il nodo AV. Se il nodo del seno è indebolito, allora l'atrioventricolare assumerà la sua funzione e inizierà a trasmettere impulsi al muscolo cardiaco con una frequenza di 40-60 contrazioni al minuto.

    Quindi il nodo atrioventricolare passa nel fascio di His (il fascio atrioventricolare è diviso in due gambe). La gamba destra si dirige verso il ventricolo destro. La gamba sinistra è divisa in due metà.

    La situazione con la gamba sinistra del fascio di His non è completamente compresa. Si ritiene che la gamba sinistra del ramo anteriore delle fibre si precipiti alla parete anteriore e laterale del ventricolo sinistro, e il ramo posteriore delle fibre fornisce la parete posteriore del ventricolo sinistro e le parti inferiori della parete laterale.

    Nel caso della debolezza del nodo del seno e del blocco dell'atrioventricolare, il fascio di His è in grado di creare impulsi a una velocità di 30-40 al minuto.

    Il sistema di conduzione si approfondisce e si dirama in rami più piccoli, trasformandosi infine in fibre di Purkinje, che penetrano nell'intero miocardio e fungono da meccanismo di trasmissione per la contrazione dei muscoli dei ventricoli. Le fibre di Purkinje sono in grado di avviare impulsi con una frequenza di 15-20 al minuto.

    Gli atleti eccezionalmente bene addestrati possono avere una frequenza cardiaca normale a riposo fino al numero più basso registrato - solo 28 battiti cardiaci al minuto! Tuttavia, per la persona media, anche se conduce uno stile di vita molto attivo, la frequenza cardiaca al di sotto dei 50 battiti al minuto può essere un segno di bradicardia. Se hai una frequenza cardiaca così bassa, dovresti essere esaminato da un cardiologo.

    Ritmo cardiaco

    La frequenza cardiaca del neonato può essere di circa 120 battiti al minuto. Con il crescere, il polso di una persona normale si stabilizza nell'intervallo da 60 a 100 battiti al minuto. Atleti ben allenati (stiamo parlando di persone con sistemi cardiovascolari e respiratori ben addestrati) hanno un polso da 40 a 100 battiti al minuto.

    Il ritmo del cuore è controllato dal sistema nervoso - il simpatico rafforza le contrazioni e il parasimpatico si indebolisce.

    L'attività cardiaca, in una certa misura, dipende dal contenuto di ioni di calcio e di potassio nel sangue. Altre sostanze biologicamente attive contribuiscono anche alla regolazione del ritmo cardiaco. Il nostro cuore potrebbe iniziare a battere più spesso sotto l'influenza di endorfine e ormoni secreti durante l'ascolto della tua musica preferita o bacio.

    Inoltre, il sistema endocrino può avere un effetto significativo sul ritmo cardiaco e sulla frequenza delle contrazioni e della loro forza. Ad esempio, il rilascio di adrenalina da parte delle ghiandole surrenali provoca un aumento della frequenza cardiaca. L'ormone opposto è l'acetilcolina.

    Toni del cuore

    Uno dei metodi più semplici per diagnosticare le malattie cardiache è ascoltare il torace con un stethophonendoscope (auscultazione).

    In un cuore sano, quando si esegue l'auscultazione standard, si sentono solo due suoni cardiaci: si chiamano S1 e S2:

    • S1 - il suono si sente quando le valvole atrioventricolare (mitrale e tricuspide) sono chiuse durante la sistole (contrazione) dei ventricoli.
    • S2 - il suono prodotto quando si chiudono le valvole semilunari (aortiche e polmonari) durante la diastole (rilassamento) dei ventricoli.

    Ogni suono è costituito da due componenti, ma per l'orecchio umano si fondono in uno a causa della quantità molto piccola di tempo tra di loro. Se in condizioni normali di auscultazione diventano udibili toni aggiuntivi, questo può indicare una malattia del sistema cardiovascolare.

    A volte suoni anomali aggiuntivi possono essere ascoltati nel cuore, che sono chiamati suoni del cuore. Di norma, la presenza di rumore indica qualsiasi patologia del cuore. Ad esempio, il rumore può causare il ritorno di sangue nella direzione opposta (rigurgito) a causa di un funzionamento improprio o danni a una valvola. Tuttavia, il rumore non è sempre un sintomo della malattia. Per chiarire le ragioni per la comparsa di ulteriori suoni nel cuore è quello di fare un'ecocardiografia (ecografia del cuore).

    Malattie cardiache

    Non sorprende che il numero di malattie cardiovascolari stia crescendo nel mondo. Il cuore è un organo complesso che riposa effettivamente (se può essere chiamato riposo) solo negli intervalli tra i battiti del cuore. Qualsiasi meccanismo complesso e costantemente funzionante richiede di per sé l'attitudine più attenta e la prevenzione costante.

    Immagina solo che un carico mostruoso cade sul cuore, dato il nostro stile di vita e il cibo abbondante e di bassa qualità. È interessante notare che il tasso di mortalità per malattie cardiovascolari è piuttosto alto nei paesi ad alto reddito.

    Le enormi quantità di cibo consumato dalla popolazione dei paesi ricchi e l'infinita ricerca di denaro, così come gli stress associati, distruggono il nostro cuore. Un altro motivo per la diffusione delle malattie cardiovascolari è l'ipodynamia - un'attività fisica catastroficamente bassa che distrugge l'intero corpo. O, al contrario, la passione analfabeta per gli esercizi fisici pesanti, che spesso si verificano sullo sfondo delle malattie cardiache, la cui presenza non viene nemmeno sospettata e riesce a morire durante gli esercizi di "salute".

    Stile di vita e salute del cuore

    I principali fattori che aumentano il rischio di sviluppare malattie cardiovascolari sono:

    • L'obesità.
    • Alta pressione sanguigna
    • Elevato colesterolo nel sangue.
    • Ipodinia o esercizio eccessivo.
    • Abbondante cibo di bassa qualità.
    • Stato emotivo e stress depressi.

    Rendi la lettura di questo grande articolo un punto di svolta nella tua vita - abbandona le cattive abitudini e cambia il tuo stile di vita.

    Il lavoro del cuore e dei vasi sanguigni, la fase del ciclo cardiaco (parte 1).

    Il cuore è forse il muscolo più importante nel corpo umano. Si contrae più di 100.000 volte al giorno e pompa più di 760 litri di sangue attraverso 60.000 vasi sanguigni.

    Il lavoro del cuore viene eseguito ciclicamente. Prima che inizi il ciclo, il cuore si trova in uno stato rilassato, gli atri e i ventricoli sono pieni di sangue. L'inizio del ciclo di contrazione del cuore è la contrazione dell'atrio, con il risultato che un'ulteriore quantità di sangue entra nei ventricoli. Quindi gli atri si rilassano ei ventricoli iniziano a contrarsi, spingendo il sangue nei vasi di scarico (l'arteria polmonare che trasporta il sangue ai polmoni e l'aorta che porta il sangue ad altri organi). Dopo un periodo di espulsione del sangue, i ventricoli si rilassano e inizia una fase di rilassamento generale. La fase di contrazione del cuore è chiamata sistole e la fase di rilassamento è chiamata diastole heart.

    Il cuore umano è a 4 camere, costituito dall'atrio sinistro e dal ventricolo sinistro, dall'atrio destro e dal ventricolo destro.

    Il cuore è il motore del nostro corpo. Questa è una pompa muscolare, la cui funzione principale è contrattile - è il movimento circolare continuo del sangue in tutto il corpo. L'ossigeno viene trasportato dai polmoni ai tessuti e la CO2, che è una delle "scorie", ai polmoni, dove il sangue viene nuovamente arricchito con l'ossigeno. Inoltre, con il sangue, i nutrienti vengono consegnati a tutte le cellule del corpo, e altre "scorie" vengono rimosse da esse, che vengono rimosse dal corpo con l'aiuto di organi di escrezione (ad esempio, i reni).

    Il lavoro del cuore, lo schema dell'afflusso di sangue.

    Le navi che trasportano il sangue dal cuore sono chiamate arterie. I vasi attraverso cui il sangue entra nel cuore sono le vene. Il sangue arricchito con l'ossigeno è chiamato arteriosa, e in cui c'è poco ossigeno, ma molta CO2 - venosa.

    L'arteria più grande è l'aorta, va direttamente dal ventricolo sinistro del cuore, i vasi più piccoli sono i capillari, attraverso le cui pareti il ​​sangue arricchito con ossigeno e sostanze nutritive viene scambiato con i tessuti del corpo. Il sangue saturo di anidride carbonica e rifiuti metabolici viene raccolto nei venuli e poi attraverso le vene, liberato dalle tossine negli organi di escrezione, torna al cuore, che lo spinge nei polmoni per il rilascio di anidride carbonica e l'arricchimento con l'ossigeno. Il sangue arricchito di ossigeno dai polmoni attraverso le vene polmonari rientra nell'atrio sinistro, viene pompato dal ventricolo sinistro nell'aorta e inizia un nuovo ciclo di movimento circolare del sangue.

    Il cuore, il muscolo cardiaco (miocardio) viene fornito con ossigeno e sostanze nutritive dai vasi coronarici (coronari) che escono dall'aorta. È un alimento per il cuore che fa un lavoro grandioso e importante. Al momento della diastole (rilassamento), il sangue riempie i vasi coronarici, e al momento della sistole del cuore, il sangue li lascia.

    Il ciclo del cuore.

    Ci sono grandi e piccoli circoli di circolazione sanguigna. Il piccolo cerchio inizia nel ventricolo destro e termina nell'atrio sinistro. Serve per nutrire il cuore e arricchire il sangue con l'ossigeno. È anche chiamato polmonare, mentre il sangue passa attraverso i polmoni.

    Il grande cerchio (dal ventricolo sinistro all'atrio destro) è responsabile per l'afflusso di sangue a tutto il corpo eccetto i polmoni.

    Le pareti dei vasi sanguigni sono molto elastiche e in grado di allungarsi e assottigliarsi a seconda della pressione del sangue in esse. Gli elementi muscolari della parete dei vasi sanguigni sono sempre in una certa tensione, che si chiama tono. Il tono vascolare, così come la forza e la frequenza cardiaca, forniscono nel flusso sanguigno la pressione necessaria per erogare il sangue a tutte le parti del corpo. Questo tono, così come l'intensità dell'attività cardiaca, è mantenuto dal sistema nervoso vegetativo (una divisione del sistema nervoso che regola l'attività degli organi interni, le ghiandole della secrezione interna ed esterna, vasi sanguigni e linfatici). A seconda delle esigenze dell'organismo, la divisione parasimpatica, dove l'acetilcolina è il principale mediatore (mediatore) (neurotrasmettitore che esegue la trasmissione neuromuscolare, nonché il principale neurotrasmettitore nel sistema nervoso parasimpatico), dilata i vasi sanguigni e rallenta la contrazione del cuore, e il simpatico (il mediatore è la noradrenalina, ormone adrenale e neurotrasmettitore) - al contrario, restringe i vasi sanguigni e accelera il cuore.

    La pressione normale è 120/80.

    La pressione nelle arterie, al momento della sistole - pressione sistolica - 120 mm Hg.

    Pressione nelle arterie durante la diastole del cuore - pressione arteriosa diastolica - 80 mm Hg.

    In medicina, la pressione superiore a 140/90 battiti / min è chiamata ipertensione. Pressione inferiore a 100/60 bpm. chiamato ipotensione.

    La frequenza cardiaca (impulso) è considerata l'intervallo di 60-90 battiti al minuto. a riposo. Se il numero di tratti è inferiore a 60, allora è chiamato bradicardia, se più di 90 tratti, quindi è tachicardia. La contrazione non regolare del cuore è chiamata aritmia. Gli atleti gli sport ciclici e gli amanti con l'esperienza di un polso a riposo sono 50 - 40 colpi / min. Questo suggerisce che il cuore è allenato, con un volume di ictus elevato (PP), pompa efficacemente il sangue.

    Ciclo del cuore

    Il ciclo cardiaco brevemente

    Il cuore si contrae ritmicamente e ciclicamente. Un ciclo dura 0,8-0,85 secondi, si tratta di circa 72-75 tagli (battiti) al minuto.

    Fasi principali:

    Sistole: contrazione dello strato muscolare (miocardio) e liberazione di sangue dalle cavità cardiache. Prima, le orecchie del cuore si contraggono, poi gli atri e poi i ventricoli. La contrazione viaggia sul cuore in un'onda dalle orecchie ai ventricoli. La contrazione del muscolo cardiaco è innescata dalla sua eccitazione e l'eccitazione inizia dal nodo seno-atriale nella parte superiore degli atri.

    Diastole - rilassamento del muscolo cardiaco (miocardio). Allo stesso tempo, c'è un aumento del flusso sanguigno miocardico e dei processi metabolici in esso. Durante la diastole, le cavità del cuore sono piene di sangue: sia gli atri sia i ventricoli simultaneamente. È importante notare che il sangue riempie contemporaneamente sia gli atri sia i ventricoli le valvole tra gli atri e i ventricoli (atrioventricolare) nella diastole sono aperte.

    Ciclo cardiaco completo

    Dal punto di vista del movimento dell'eccitazione attraverso il muscolo cardiaco, il ciclo dovrebbe iniziare con eccitazione e contrazione degli atri, poiché È su di loro che va l'eccitazione del principale pacemaker del cuore, il nodo seno-atriale.

    Driver del ritmo

    Un driver della frequenza cardiaca è una parte speciale del muscolo cardiaco che genera autonomamente impulsi elettrochimici che eccitano il muscolo cardiaco e portano alla sua contrazione.

    Nell'uomo, il pacemaker principale è il nodo seno-atriale (seno-atriale). Questa è una regione di tessuto cardiaco che contiene cellule "pacemaker", vale a dire cellule capaci di eccitazione spontanea. Si trova sull'arco dell'atrio destro vicino al luogo in cui si trova la vena cava superiore. Il nodo consiste in un piccolo numero di fibre muscolari cardiache innervate dalle terminazioni di neuroni del sistema nervoso vegetativo. È importante capire che l'innervazione vegetativa non crea un ritmo indipendente dell'impulso cardiaco, ma regola solo (cambia) il ritmo impostato dalle cellule cardiache del pacemaker stesso. Nel nodo sino-atriale, ogni onda di eccitazione del cuore si alza, che porta ad una contrazione del muscolo cardiaco e funge da stimolo per la comparsa dell'onda successiva.

    Fasi del ciclo cardiaco

    Quindi, l'ondata di contrazione del cuore innescata da un'ondata di eccitazione inizia con gli atri.

    1. Sistole (contrazione) degli atri (insieme alle orecchie) - 0,1 s. Il contratto atriale e spingere il sangue già in loro nei ventricoli. Nei ventricoli c'è anche del sangue, che viene infuso nelle vene durante la diastole, passando attraverso gli atri e aprendo le valvole atrioventricolari. A causa della sua contrazione dell'atrio, ulteriori porzioni di sangue vengono versate nei ventricoli.

    2. Diastole (rilassamento) degli atri - è il rilassamento degli atri dopo la contrazione, dura 0,7 secondi. Quindi, il tempo di riposo degli atri è molto più lungo del tempo del loro lavoro, ed è importante sapere. Dai ventricoli, il sangue non può tornare indietro agli atri a causa delle speciali valvole atrioventricolari tra gli atri e i ventricoli (tricuspide a destra e bicuspide o mitrale, a sinistra). Così, le pareti degli atri in diastole sono rilassate, ma il sangue non scorre dai ventricoli in esse. Durante questo periodo, il cuore ha 2 camere vuote e 2 camere piene. Il sangue inizia a fluire negli atri dalle vene. Innanzitutto, il sangue lento riempie gli atri rilassati. Quindi, dopo la contrazione dei ventricoli e il loro rilassamento, apre la pressione con la sua pressione ed entra nei ventricoli. La diastole atriale non è ancora finita.

    E infine, nel nodo sino-atriale, nasce una nuova ondata di eccitazione e, sotto la sua influenza, gli atri vanno in sistole e spingono il sangue accumulato in essi nei ventricoli.

    3. Sistole ventricolare - 0.3 s. Un'onda di eccitazione proviene dagli atri, così come attraverso il setto interventricolare, e raggiunge il miocardio ventricolare. I ventricoli sono ridotti. Il sangue sotto pressione viene rilasciato dai ventricoli nelle arterie. Da sinistra - nell'aorta, per correre lungo il grande cerchio della circolazione sanguigna, e da destra - nel tronco polmonare, per correre lungo il piccolo cerchio della circolazione sanguigna. Lo sforzo massimo e la pressione sanguigna massima forniscono il ventricolo sinistro. Ha il miocardio più potente di tutte le camere del cuore.

    4. Diastole dei ventricoli - 0,5 s. Si noti che di nuovo il resto dura più a lungo del lavoro (0,5 s contro 0,3). I ventricoli si rilassano, le valvole semilunari ai loro bordi nelle arterie sono chiuse, non permettono al sangue di tornare ai ventricoli. Le valvole atrioventricolari (atrioventricolari) sono aperte in questo momento. Inizia a riempirsi di sangue dei ventricoli, che li fa entrare dagli atri, ma finora senza contrazione dell'Atria. Tutte le 4 camere del cuore, ad es. i ventricoli e gli atri sono rilassati.

    5. Diastole totale del cuore - 0,4 s. Le pareti degli atri e dei ventricoli sono rilassate. I ventricoli sono pieni di sangue che scorre in essi attraverso gli atri dalle vene cave, 2/3 e gli atri - completamente.

    6. Nuovo ciclo. Inizia il ciclo successivo - sistole atriale.

    Video: pompare sangue al cuore

    Per consolidare questa informazione, guarda il diagramma del ciclo cardiaco animato:

    Dettagli del lavoro dei ventricoli del cuore

    1. Systole.

    2. Esilio.

    3. Diastole

    Sistole ventricolare

    1. Il periodo di sistole, cioè riduzione, si compone di due fasi:

    1) La fase di riduzione asincrona è 0,04 s. Si verifica una contrazione irregolare della parete ventricolare. Contemporaneamente, si verifica la contrazione del setto interventricolare. A causa di ciò, la pressione si accumula nei ventricoli e, di conseguenza, la valvola atrioventricolare si chiude. Di conseguenza, i ventricoli sono isolati dagli atri.

    2) Fase di contrazione isometrica. Ciò significa che la lunghezza dei muscoli non cambia, sebbene la loro tensione aumenti. Anche il volume dei ventricoli non cambia. Tutte le valvole sono chiuse, le pareti dei ventricoli si contraggono e tendono a contrarsi. Di conseguenza, le pareti dei ventricoli si deformano, ma il sangue non si muove. Ma questo aumenta la pressione del sangue all'interno dei ventricoli, apre le valvole semilunari delle arterie e appare una via d'uscita per il sangue.

    2. Periodo espulsione di sangue - 0,25 s.

    1) La fase di espulsione rapida - 0,12 s.

    2) Fase di espulsione lenta - 0,13 s.

    Espulsione (scarica) di sangue dal cuore

    Il sangue sotto pressione viene compresso dal ventricolo sinistro nell'aorta. La pressione nell'aorta aumenta drammaticamente, e si espande, prendendo una grande porzione di sangue. Tuttavia, a causa dell'elasticità della sua parete, l'aorta si restringe immediatamente e spinge il sangue attraverso le arterie. L'espansione e la contrazione dell'aorta generano un'onda trasversale, che si propaga con una certa velocità attraverso i vasi. Questa è un'onda di espansione e contrazione della parete del vaso - un'onda impulsiva. La sua velocità non coincide con la velocità del movimento del sangue.

    L'impulso è un'onda trasversale di espansione e contrazione della parete arteriosa, generata dall'espansione e dalla contrazione dell'aorta quando il sangue viene rilasciato dal ventricolo sinistro del cuore.

    Diastole ventricoli

    Periodo protodiastolico - 0,04 s. Dalla fine della sistole ventricolare alla chiusura delle valvole semilunari. Durante questo periodo, parte del sangue ritorna al ventricolo dalle arterie sotto la pressione del sangue nei cerchi della circolazione sanguigna.

    Fase di rilassamento isometrico - 0,25 s. Tutte le valvole sono chiuse, le fibre muscolari si riducono, non si sono ancora allungate. Ma la loro tensione diminuisce. La pressione negli atri diventa più alta che nei ventricoli e questa pressione di sangue apre le valvole atrioventricolari per consentire al sangue di passare dagli atri ai ventricoli.

    Fase di riempimento C'è una diastole comune del cuore, in cui il sangue viene riempito in tutte le sue camere, dapprima rapidamente e poi lentamente. Il sangue transita attraverso gli atri e riempie i ventricoli. I ventricoli sono riempiti di sangue per 2/3 di volume. In questo momento, il cuore è funzionale a 2 camere, perché solo le sue metà sinistra e destra sono separate. Anatomicamente, tutte e 4 le telecamere sono conservate.

    Presistola. I ventricoli sono infine riempiti di sangue a causa della sistole atriale. I ventricoli sono ancora rilassati, mentre gli atri sono già ridotti.

    Ciclo cardiaco Systole e Diastole atriale

    Ciclo cardiaco e sua analisi

    Il ciclo cardiaco è sistole e diastole del cuore, periodicamente ripetuto in una sequenza rigorosa, vale a dire periodo di tempo, inclusa una contrazione e un rilassamento degli atri e dei ventricoli.

    Nel funzionamento ciclico del cuore si distinguono due fasi: sistole (contrazione) e diastole (rilassamento). Durante la sistole, le cavità del cuore sono liberate dal sangue e durante la diastole sono riempite di sangue. Il periodo che include una sistole e una diastole degli atri e dei ventricoli e la pausa generale che li segue è chiamato ciclo dell'attività cardiaca.

    La sistole atriale negli animali dura 0,1-0,16 s, e la sistole ventricolare - 0,5-0,56 s. La pausa cardiaca totale (diastole atriale e ventricolare simultanea) dura 0,4 secondi. Durante questo periodo, il cuore riposa. L'intero ciclo cardiaco dura da 0,8 a 0,86 s.

    La funzione atriale è meno complessa della funzione ventricolare. La sistole atriale fornisce il flusso di sangue ai ventricoli e dura 0,1 s. Quindi gli atri passano nella fase diastolica, che dura 0,7 s. Durante la diastole, gli atri sono pieni di sangue.

    La durata delle diverse fasi del ciclo cardiaco dipende dalla frequenza cardiaca. Con battiti cardiaci più frequenti, la durata di ciascuna fase, in particolare la diastole, diminuisce.

    Fasi del ciclo cardiaco

    Sotto il ciclo del cuore comprendete il periodo che copre una contrazione - sistole e un rilassamento - diastole atriale e ventricolare - una pausa comune. La durata totale del ciclo cardiaco a una frequenza cardiaca di 75 battiti / min è 0,8 s.

    La contrazione del cuore inizia con la sistole atriale, che dura 0,1 s. La pressione negli atri aumenta a 5-8 mm Hg. Art. La sistole atriale è sostituita da una sistole ventricolare con una durata di 0,33 s. La sistole ventricolare è divisa in diversi periodi e fasi (Figura 1).

    Fig. 1. Fase del ciclo cardiaco

    Il periodo di tensione dura 0,08 se consiste di due fasi:

    • la fase di contrazione asincrona del miocardio ventricolare dura 0,05 s. Durante questa fase, il processo di eccitazione e il processo di contrazione che seguirono si diffuse attraverso il miocardio ventricolare. La pressione nei ventricoli è ancora vicino allo zero. Entro la fine della fase, la contrazione copre tutte le fibre del miocardio e la pressione nei ventricoli inizia ad aumentare rapidamente.
    • fase della contrazione isometrica (0,03 s) - inizia con lo sbattere delle valvole ventricolare-ventricolare. Quando ciò accade, io, o sistolica, il tono del cuore. Lo spostamento delle valvole e del sangue nella direzione degli atri provoca un aumento della pressione negli atri. La pressione nei ventricoli aumenta rapidamente: fino a 70-80 mm Hg. Art. a sinistra e fino a 15-20 mm Hg. Art. nella giusta

    Valvole oscillanti e semilunari sono ancora chiuse, il volume di sangue nei ventricoli rimane costante. A causa del fatto che il fluido è praticamente incomprimibile, la lunghezza delle fibre del miocardio non cambia, solo il loro stress aumenta. Aumentare rapidamente la pressione sanguigna nei ventricoli. Il ventricolo sinistro diventa rapidamente tondo e con una forza colpisce la superficie interna della parete toracica. Nel quinto spazio intercostale, 1 cm a sinistra della linea medio-clavicola in questo momento, viene determinato l'impulso apicale.

    Entro la fine del periodo di stress, la pressione rapidamente crescente nei ventricoli sinistro e destro diventa superiore alla pressione nell'aorta e nell'arteria polmonare. Il sangue dei ventricoli si riversa su questi vasi.

    Il periodo di espulsione del sangue dai ventricoli dura 0,25 s ed è costituito da una fase di rapido (0,12 s) e una fase di lenta espulsione (0,13 s). La pressione nei ventricoli nello stesso tempo aumenta: nella sinistra a 120-130 mm Hg. Art., E il diritto a 25 mm Hg. Art. Alla fine della fase di espulsione lenta, il miocardio ventricolare inizia a rilassarsi, inizia la sua diastole (0,47 s). La pressione nei ventricoli si abbassa, il sangue dall'aorta e l'arteria polmonare si riversano nella cavità dei ventricoli e "sigilla" le valvole semilunari e si forma un II o diastolico tono cardiaco.

    Il tempo tra l'inizio del rilassamento ventricolare e lo sbattere delle valvole semilunari è chiamato periodo protodiastolico (0,04 s). Dopo aver sbattuto le valvole semilunari, la pressione nei ventricoli diminuisce. In questo momento, le valvole fogliari sono ancora chiuse, il volume di sangue rimanente nei ventricoli e, di conseguenza, la lunghezza delle fibre miocardiche, non cambia, pertanto questo periodo è chiamato il periodo di rilassamento isometrico (0,08 s). Entro la fine della sua pressione nei ventricoli diventa inferiore rispetto agli atri, le valvole ventricolari atriali si aprono e il sangue dagli atri entra nei ventricoli. Inizia il periodo di riempimento dei ventricoli con sangue, che dura 0,25 s ed è suddiviso in fasi di riempimento veloce (0,08 s) e lento (0,17 s).

    Oscillazioni delle pareti dei ventricoli a causa del rapido flusso di sangue verso di loro causano l'apparizione del terzo tono cardiaco. Alla fine della fase di riempimento lento, si verifica la sistole atriale. Gli atri iniettano una quantità aggiuntiva di sangue nei ventricoli (periodo presistolico pari a 0,1 s), dopodiché inizia un nuovo ciclo di attività ventricolare.

    L'oscillazione delle pareti del cuore, causata dalla contrazione degli atri e dal flusso aggiuntivo di sangue nei ventricoli, porta all'apparizione del quarto tono cardiaco.

    Con l'ascolto normale del cuore, i toni alti I e II sono chiaramente udibili e i toni silenziosi III e IV vengono rilevati solo con la registrazione grafica dei toni cardiaci.

    Nell'uomo, il numero di battiti cardiaci al minuto può variare considerevolmente e dipende da varie influenze esterne. Quando si eseguono lavori fisici o carichi atletici, il cuore può essere ridotto a 200 volte al minuto. La durata di un ciclo cardiaco sarà di 0,3 secondi. L'aumento del numero di battiti cardiaci è chiamato tachicardia, mentre il ciclo cardiaco si riduce. Durante il sonno, il numero di battiti cardiaci viene ridotto a 60-40 battiti al minuto. In questo caso, la durata di un ciclo è di 1,5 s. La riduzione del numero di battiti cardiaci si chiama bradicardia e il ciclo cardiaco aumenta.

    Struttura del ciclo cardiaco

    I cicli cardiaci seguono con una frequenza impostata dal pacemaker. La durata di un singolo ciclo cardiaco dipende dalla frequenza delle contrazioni del cuore e, ad esempio, ad una frequenza di 75 battiti / min, è di 0,8 s. La struttura generale del ciclo cardiaco può essere rappresentata come un diagramma (Fig. 2).

    Come si può vedere dalla fig. 1, quando la durata del ciclo cardiaco è di 0,8 s (la frequenza delle contrazioni è di 75 battiti / min), gli atri sono in uno stato sistole di 0,1 se in uno stato di diastole 0,7 s.

    La sistole è la fase del ciclo cardiaco, inclusa la contrazione del miocardio e l'espulsione del sangue dal cuore nel sistema vascolare.

    La diastole è la fase del ciclo cardiaco, che include il rilassamento del miocardio e il riempimento delle cavità del cuore con il sangue.

    Fig. 2. Diagramma della struttura generale del ciclo cardiaco. I quadrati scuri mostrano sistole atriale e ventricolare, brillanti - la loro diastole

    I ventricoli sono nello stato di sistole per circa 0,3 secondi e in stato diastole per circa 0,5 secondi. Allo stesso tempo, nello stato di diastole, gli atri e i ventricoli sono circa 0,4 secondi (diastole totale del cuore). La sistole e la diastole dei ventricoli si dividono in periodi e fasi del ciclo cardiaco (Tabella 1).

    Tabella 1. Periodi e fasi del ciclo cardiaco

    Sistole ventricolare 0,33 s

    Periodo di tensione - 0,08 s

    Fase di riduzione asincrona - 0,05 s

    Fase di riduzione isometrica - 0,03 s

    Periodo di esilio 0,25 s

    Fase di espulsione rapida - 0,12 s

    Fase di espulsione lenta - 0,13 s

    Diastole ventricoli 0.47 con

    Periodo di rilassamento - 0,12 s

    Intervallo protodiastolico - 0,04 s

    Fase di rilassamento isometrico - 0,08 s

    Periodo di riempimento - 0,25 s

    Fase di riempimento rapido - 0,08 s

    Fase di riempimento lento - 0,17 s

    La fase di contrazione asincrona è la fase iniziale della sistole, in cui l'onda di eccitazione si propaga attraverso il miocardio ventricolare, ma non vi è una contemporanea riduzione dei cardiomiociti e delle gamme di pressione ventricolare da 6-8 a 9-10 mm Hg. Art.

    La fase di contrazione isometrica è una fase sistolica alla quale si chiudono le valvole atrioventricolari e la pressione nei ventricoli sale velocemente a 10-15 mm Hg. Art. a destra e fino a 70-80 mm Hg. Art. a sinistra.

    La fase di rapida espulsione è lo stadio della sistole, in cui vi è un aumento della pressione nei ventricoli a valori massimi di 20-25 mm Hg. Art. a destra e 120-130 mm Hg. Art. a sinistra e sangue (circa il 70% dell'espulsione sistolica) entra nel sistema vascolare.

    La fase di espulsione lenta è lo stadio della sistole in cui il sangue (il restante 30% di aumento sistolico) continua a fluire nel sistema vascolare ad un ritmo più lento. La pressione diminuisce gradualmente nel ventricolo sinistro da 120-130 a 80-90 mm Hg. Art., A destra - da 20-25 a 15-20 mm Hg. Art.

    Periodo protodiastolico - il passaggio dalla sistole alla diastole, in cui i ventricoli iniziano a rilassarsi. La pressione diminuisce nel ventricolo sinistro a 60-70 mm Hg. Art., In natura - fino a 5-10 mm Hg. Art. A causa della maggiore pressione nell'aorta e nell'arteria polmonare, le valvole semilunari si chiudono.

    Il periodo di rilassamento isometrico è lo stadio della diastole in cui le cavità dei ventricoli sono isolate da valvole atrioventricolari e semilunari chiuse, si rilassano isometricamente, la pressione si avvicina a 0 mm Hg. Art.

    La fase di riempimento veloce è la fase diastolica, in cui le valvole atrioventricolari si aprono e il sangue si riversa nei ventricoli ad alta velocità.

    La fase di riempimento lento è la fase diastolica, in cui il sangue penetra lentamente negli atri attraverso le vene cave e attraverso le valvole atrioventricolari aperte nei ventricoli. Alla fine di questa fase, i ventricoli sono riempiti al 75% di sangue.

    Periodo presistolico - lo stadio della diastole, in coincidenza con la sistole atriale.

    Sistole atriale - contrazione della muscolatura atriale, in cui la pressione nell'atrio destro sale a 3-8 mm Hg. Art., A sinistra - fino a 8-15 mm Hg. Art. e circa il 25% del volume di sangue diastolico (15-20 ml ciascuno) va a ciascuno dei ventricoli.

    Tabella 2. Caratteristiche delle fasi del ciclo cardiaco

    La contrazione del miocardio degli atri e dei ventricoli inizia dopo la loro eccitazione, e poiché il pacemaker si trova nell'atrio destro, il suo potenziale d'azione si estende inizialmente al miocardio destro e poi a sinistra degli atri. Di conseguenza, il miocardio dell'atrio destro è responsabile dell'eccitazione e della contrazione un po 'prima del miocardio dell'atrio sinistro. In condizioni normali, il ciclo cardiaco inizia con la sistole atriale, che dura 0,1 s. La copertura non simultanea dell'eccitazione del miocardio dell'atrio destro e sinistro è riflessa dalla formazione dell'onda P sull'ECG (figura 3).

    Anche prima della sistole atriale, le valvole AV sono aperte e le cavità atriale e ventricolare sono già in gran parte piene di sangue. Il grado di allungamento delle pareti sottili del miocardio atriale da parte del sangue è importante per la stimolazione dei meccanocettori e la produzione di peptide natriuretico atriale.

    Fig. 3. Cambiamenti nelle prestazioni del cuore in diversi periodi e fasi del ciclo cardiaco

    Durante la sistole atriale, la pressione nell'atrio sinistro può raggiungere 10-12 mm Hg. Art., E nella destra - fino a 4-8 mm Hg. Art., Atria riempire inoltre i ventricoli con un volume di sangue che è circa il 5-15% del volume a riposo nei ventricoli a riposo. Il volume di sangue che entra nei ventricoli nella sistole atriale durante l'esercizio fisico può aumentare ed essere compreso tra il 25 e il 40%. Il volume di riempimento supplementare può aumentare fino al 40% o più nelle persone con più di 50 anni.

    Il flusso di sangue sotto pressione dagli atri contribuisce allo stiramento del miocardio ventricolare e crea le condizioni per la loro successiva riduzione più efficace. Pertanto, gli atri svolgono il ruolo di una sorta di capacità contrattile dell'amplificatore dei ventricoli. Se questa funzione atriale viene compromessa (ad esempio, nella fibrillazione atriale), l'efficienza dei ventricoli diminuisce, si verifica una riduzione delle riserve funzionali e la transizione all'insufficienza della funzione contrattile del miocardio accelera.

    Al momento della sistole atriale, un'aura viene registrata sulla curva dell'impulso venoso, per alcune persone, il 4 ° tono cardiaco può essere registrato durante la registrazione di un fonocardiogramma.

    Il volume di sangue che si trova dopo la sistole atriale nella cavità ventricolare (alla fine della loro diastole) è chiamato end-diastolico ed è costituito dal volume di sangue rimanente nel ventricolo dopo la precedente sistole (ovviamente il volume sistolico), il volume di sangue che ha riempito la cavità ventricolare durante diastole a sistole atriale e volume di sangue aggiuntivo che è entrato nel ventricolo in sistole atriale. Il valore del volume ematico diastolico finale dipende dalla dimensione del cuore, dal volume di sangue trapelato dalle vene e da una serie di altri fattori. In un giovane sano a riposo, può essere di circa 130-150 ml (a seconda dell'età, del sesso e del peso corporeo può variare da 90 a 150 ml). Questo volume di sangue aumenta leggermente la pressione nella cavità dei ventricoli, che durante la sistole atriale diventa uguale alla pressione in essi e può fluttuare nel ventricolo sinistro entro 10-12 mm Hg. Art., E nella destra - 4-8 mm Hg. Art.

    Nell'arco di un periodo di 0,12-0,2 s, corrispondente all'intervallo PQ sull'ECG, il potenziale d'azione dal nodo SA si estende fino alla regione apicale dei ventricoli, nel miocardio di cui inizia il processo di eccitazione, rapidamente diffondendosi dall'apice alla base del cuore e dalla superficie endocardica ad epicardiale. Dopo l'eccitazione, inizia una contrazione del miocardio o della sistole ventricolare, la cui durata dipende anche dalla frequenza delle contrazioni del cuore. In condizioni di riposo, è circa 0,3 s. La sistole ventricolare consiste in periodi di tensione (0,08 s) ed espulsione (0,25 s) di sangue.

    La sistole e la diastole di entrambi i ventricoli vengono eseguite quasi contemporaneamente, ma si verificano in diverse condizioni emodinamiche. Un'ulteriore, più dettagliata descrizione degli eventi che si verificano durante la sistole, sarà considerata nell'esempio del ventricolo sinistro. Per confronto, alcuni dati sono dati per il ventricolo destro.

    Il periodo di tensione dei ventricoli è suddiviso in fasi di contrazione asincrona (0,05 s) e isometrica (0,03 s). La fase a breve termine della contrazione asincrona all'inizio della sistole ventricolare è una conseguenza della non simultaneità della copertura di eccitazione e della contrazione di varie sezioni del miocardio. L'eccitazione (corrispondente all'onda Q sull'ECG) e la contrazione miocardica si verificano inizialmente nella regione dei muscoli papillari, nella parte apicale del setto interventricolare e nell'apice dei ventricoli, e durante circa 0,03 s si estende al restante miocardio. Questo coincide con la registrazione sull'ECG dell'onda Q e la parte ascendente dell'onda R alla sua estremità (vedi Fig. 3).

    L'apice del cuore si contrae prima della sua base, quindi la parte apicale dei ventricoli si solleva verso la base e spinge il sangue nella stessa direzione. Le aree del miocardio dei ventricoli non eccitate dall'eccitazione possono leggermente estendersi in questo momento, quindi il volume del cuore rimane pressoché invariato, la pressione del sangue nei ventricoli non cambia in modo significativo e rimane inferiore alla pressione del sangue nelle grandi vasi sopra le valvole tricuspide. La pressione sanguigna nell'aorta e in altri vasi arteriosi continua a scendere, avvicinandosi al valore del minimo, diastolica, pressione. Tuttavia, le valvole vascolari tricuspide rimangono chiuse per ora.

    Gli atri si rilassano in questo momento e la pressione sanguigna in essi diminuisce: per l'atrio sinistro, in media, da 10 mm Hg. Art. (presistolico) fino a 4 mm Hg. Art. Alla fine della fase di contrazione asincrona del ventricolo sinistro, la pressione sanguigna al suo interno sale a 9-10 mm Hg. Art. Il sangue, che è sotto pressione dalla parte apicale contrattile del miocardio, raccoglie i lembi delle valvole AV, si chiudono insieme, prendendo una posizione vicino all'orizzontale. In questa posizione, le valvole sono trattenute dai fili dei tendini dei muscoli papillari. Accorciare la dimensione del cuore dal suo apice alla base, che, a causa dell'invarianza delle dimensioni dei filamenti del tendine, potrebbe portare all'inversione delle cuspidi valvolari negli atri, è compensata da una contrazione dei muscoli papillari del cuore.

    Al momento della chiusura delle valvole atrioventricolari, si sente il primo tono sistolico, si conclude la fase asincrona e inizia la fase di contrazione isometrica, che è anche chiamata fase di contrazione isovolumetrica (isovolumica). La durata di questa fase è di circa 0,03 s, la sua implementazione coincide con l'intervallo di tempo in cui sono registrati la parte discendente dell'onda R e l'inizio dell'onda S sull'ECG (vedi Fig. 3).

    Dal momento in cui le valvole AV sono chiuse, in condizioni normali la cavità di entrambi i ventricoli diventa ermetica. Il sangue, come qualsiasi altro liquido, è incomprimibile, quindi la contrazione delle fibre miocardiche si verifica alla loro lunghezza costante o in modalità isometrica. Il volume delle cavità ventricolari rimane costante e la contrazione del miocardio si verifica in modalità isovolumica. L'aumento di tensione e forza della contrazione miocardica in tali condizioni si trasforma in pressione del sangue rapidamente crescente nelle cavità dei ventricoli. Sotto l'influenza della pressione sanguigna sulla regione dell'AV-setto, si verifica un breve spostamento verso gli atri, che viene trasmesso al sangue venoso in entrata e viene riflesso dalla comparsa di un'onda C sulla curva dell'impulso venoso. Entro un breve periodo di tempo - circa 0,04 s, la pressione del sangue nella cavità ventricolare sinistra raggiunge un valore paragonabile al suo valore in questo punto dell'aorta, che è diminuito a un livello minimo di 70-80 mm Hg. Art. La pressione del sangue nel ventricolo destro raggiunge 15-20 mm Hg. Art.

    L'eccesso di pressione arteriosa nel ventricolo sinistro rispetto al valore della pressione diastolica nell'aorta è accompagnato dall'apertura delle valvole aortiche e dal cambiamento nel periodo di tensione del miocardio con il periodo di espulsione del sangue. Il motivo dell'apertura delle valvole semilunari dei vasi sanguigni è il gradiente della pressione sanguigna e la caratteristica tascabile della loro struttura. Le valvole delle valvole sono premute contro le pareti dei vasi sanguigni dal flusso di sangue espulso in esse dai ventricoli.

    Il periodo di sangue esiliato dura circa 0,25 s ed è suddiviso in fasi di rapida espulsione (0,12 s) e lenta espulsione di sangue (0,13 s). Durante questo periodo, le valvole AV rimangono chiuse, le valvole semilunari rimangono aperte. La rapida espulsione di sangue all'inizio del periodo è dovuta a diverse ragioni. Dall'inizio dell'eccitazione dei cardiomiociti, ci sono voluti circa 0,1 se il potenziale d'azione è nella fase di plateau. Il calcio continua a fluire nella cellula attraverso i canali di calcio lenti aperti. Pertanto, l'alta tensione delle fibre del miocardio, che era già all'inizio dell'espulsione, continua ad aumentare. Il miocardio continua a comprimere il volume decrescente del sangue con maggiore forza, che è accompagnato da un ulteriore aumento della pressione nella cavità ventricolare. Il gradiente della pressione sanguigna tra la cavità del ventricolo e l'aorta aumenta e il sangue inizia ad essere espulso nell'aorta con grande velocità. Nella fase di espulsione rapida, oltre la metà del volume di ictus di sangue espulso dal ventricolo durante l'intero periodo di espulsione (circa 70 ml) viene rilasciato nell'aorta. Entro la fine della fase di rapida espulsione del sangue, la pressione nel ventricolo sinistro e nell'aorta raggiunge il suo massimo: circa 120 mm Hg. Art. nei giovani a riposo e nel tronco polmonare e nel ventricolo destro - circa 30 mm Hg. Art. Questa pressione è chiamata sistolica. La fase di rapida espulsione del sangue avviene nel momento in cui la fine dell'onda S e la parte isoelettrica dell'intervallo ST sono registrate sull'ECG prima dell'inizio dell'onda T (vedi Fig. 3).

    Con la rapida espulsione di anche il 50% del volume della corsa, la velocità del flusso sanguigno verso l'aorta in breve tempo sarà di circa 300 ml / s (35 ml / 0,12 s). Il tasso medio di deflusso del sangue dalla parte arteriosa del sistema vascolare è di circa 90 ml / s (70 ml / 0,8 s). Quindi, più di 35 ml di sangue entrano nell'aorta in 0,12 secondi, e durante questo periodo circa 11 ml di sangue fluiscono da esso nelle arterie. È ovvio che per poter accogliere per un breve periodo un volume maggiore di sangue che scorre rispetto a quello che scorre, è necessario aumentare la capacità delle navi che ricevono questo volume di sangue "in eccesso". Parte dell'energia cinetica del miocardio che si contrae sarà spesa non solo per l'espulsione del sangue, ma anche per lo stiramento delle fibre elastiche della parete aortica e delle grandi arterie per aumentarne la capacità.

    All'inizio della fase di rapida espulsione del sangue, la dilatazione delle pareti dei vasi sanguigni è relativamente facile, ma più sangue viene espulso e man mano che aumenta la quantità di sangue, aumenta la resistenza alla tensione. Il limite di stiramento delle fibre elastiche si esaurisce e le rigide fibre di collagene delle pareti dei vasi iniziano ad essere sottoposte a stiramento. La resistenza dei vasi periferici e il sangue stesso interferiscono con il flusso sanguigno. Il miocardio ha bisogno di spendere una grande quantità di energia per superare queste resistenze. L'energia potenziale del tessuto muscolare e le strutture elastiche del miocardio accumulate durante la fase di tensione isometrica si esauriscono e la forza della contrazione diminuisce.

    La velocità dell'espulsione di sangue inizia a diminuire e la fase di espulsione rapida viene sostituita da una fase di lenta espulsione del sangue, che viene anche chiamata fase di espulsione ridotta. La sua durata è di circa 0,13 s. Il tasso di diminuzione del volume ventricolare diminuisce. La pressione sanguigna nel ventricolo e nell'aorta all'inizio di questa fase diminuisce quasi alla stessa velocità. A questo punto, si verifica la chiusura dei canali di calcio lenti e termina la fase di plateau del potenziale di azione. L'entrata del calcio nei cardiomiociti è ridotta e la membrana del miocita entra nella fase 3 - la ripolarizzazione finale. Il sistole termina, inizia il periodo di espulsione del sangue e della diastole dei ventricoli (corrisponde nel tempo alla fase 4 del potenziale d'azione). L'implementazione dell'espulsione ridotta avviene in un momento in cui l'onda T viene registrata sull'ECG e il completamento della sistole e l'inizio della diastole si verificano al momento della fine dell'onda T.

    Nella sistole dei ventricoli del cuore, oltre la metà del volume ematico diastolico terminale (circa 70 ml) viene espulso da essi. Questo volume è chiamato volume della gittata del sangue.Il volume di shock del sangue può aumentare con un aumento della contrattilità miocardica e, al contrario, diminuire con contrattilità insufficiente (vedere ulteriori indicatori della funzione di pompaggio del cuore e della contrattilità miocardica).

    La pressione sanguigna nei ventricoli all'inizio della diastole diventa inferiore alla pressione sanguigna nei vasi arteriosi divergenti dal cuore. Il sangue in questi vasi subisce l'azione delle forze delle fibre elastiche tese delle pareti dei vasi. Il lume dei vasi sanguigni viene ripristinato e un volume di sangue viene rimosso da loro. Parte del sangue scorre verso la periferia. Un'altra parte del sangue viene spostata nella direzione dei ventricoli del cuore e, quando si muove all'indietro, riempie le tasche delle valvole vascolari tricuspide, i cui bordi sono chiusi e trattenuti in questo stato dalla pressione differenziale risultante del sangue.

    L'intervallo di tempo (circa 0,04 s) dall'inizio della diastole al collasso delle valvole vascolari è chiamato intervallo protodiastolico e alla fine di questo intervallo viene registrato e monitorato il 2 ° arresto cardiaco diastolico. Con la registrazione sincrona dell'ECG e del fonocardiogramma, l'inizio del secondo tono viene registrato alla fine dell'onda T sull'ECG.

    La diastole del miocardio ventricolare (circa 0,47 s) è anche divisa in periodi di rilassamento e riempimento, che a loro volta sono suddivisi in fasi. Poiché la chiusura delle valvole vascolari semilunari della cavità ventricolare è a 0,08 con chiuso, dal momento che le valvole AV a quest'ora rimangono ancora chiuse. Il rilassamento del miocardio, dovuto principalmente alle proprietà delle strutture elastiche della sua matrice intra ed extracellulare, viene effettuato in condizioni isometriche. Nelle cavità dei ventricoli del cuore, meno del 50% del sangue del volume telediastolico rimane dopo la sistole. Il volume delle cavità ventricolari durante questo tempo non cambia, la pressione sanguigna nei ventricoli inizia a diminuire rapidamente e tende a 0 mm Hg. Art. Ricordiamo che a quest'ora il sangue continuava a tornare agli atri per circa 0,3 secondi e che la pressione negli atri aumentava gradualmente. Nel momento in cui la pressione sanguigna negli atri supera la pressione nei ventricoli, le valvole AV si aprono, la fase di rilassamento isometrica termina e inizia il periodo di riempimento dei ventricoli con il sangue.

    Il periodo di riempimento dura circa 0,25 s ed è suddiviso in fasi di riempimento veloce e lento. Immediatamente dopo l'apertura delle valvole AV, il sangue lungo il gradiente di pressione scorre rapidamente dagli atri nella cavità ventricolare. Ciò è facilitato da un effetto di aspirazione dei ventricoli rilassanti, associato alla loro espansione dall'azione delle forze elastiche che si sono verificate durante la compressione del miocardio e della sua struttura di tessuto connettivo. All'inizio della fase di riempimento veloce, le vibrazioni del suono sotto forma di 3 ° suono diastolico del cuore possono essere registrate sul fonocardiogramma, causato dall'apertura delle valvole AV e dalla rapida transizione del sangue nei ventricoli.

    Quando i ventricoli si riempiono, la caduta di pressione tra gli atri e i ventricoli diminuisce e dopo circa 0,08 s, la fase di riempimento rapido lascia il posto alla fase di riempimento lento dei ventricoli con sangue, che dura circa 0,17 s. Il riempimento dei ventricoli con sangue durante questa fase viene effettuato principalmente a causa della conservazione dell'energia cinetica residua nel sangue che si muove attraverso i vasi dati dalla precedente contrazione del cuore.

    0,1 s prima della fine della fase di riempimento lento con il sangue dei ventricoli, il ciclo cardiaco è completato, un nuovo potenziale di azione si pone nel pacemaker, la successiva sistole atriale viene eseguita ei ventricoli sono riempiti con volumi ematici diastolici. Questo periodo di tempo di 0,1 s, il ciclo cardiaco finale, è talvolta chiamato anche il periodo di riempimento aggiuntivo dei ventricoli durante la sistole atriale.

    L'indicatore integrale che caratterizza la funzione di pompaggio meccanico del cuore è il volume di sangue pompato dal cuore al minuto o il volume minuto del sangue (IOC):

    CIO = FC • PF,

    dove HR è la frequenza cardiaca al minuto; PP - volume della corsa del cuore. Normalmente, a riposo, il CIO di un giovane è di circa 5 litri. La regolazione del CIO viene effettuata da vari meccanismi attraverso un cambiamento della frequenza cardiaca e (o) PP.

    L'effetto sulla frequenza cardiaca può essere esercitato attraverso una modifica delle proprietà delle cellule del pacemaker. L'effetto su PP si ottiene attraverso l'effetto sulla contrattilità dei cardiomiociti miocardici e la sincronizzazione della sua contrazione.